2,433 research outputs found

    THREE DIMENSIONAL MODELING AND ANIMATION OF FACIAL EXPRESSIONS

    Get PDF
    Facial expression and animation are important aspects of the 3D environment featuring human characters. These animations are frequently used in many kinds of applications and there have been many efforts to increase the realism. Three aspects are still stimulating active research: the detailed subtle facial expressions, the process of rigging a face, and the transfer of an expression from one person to another. This dissertation focuses on the above three aspects. A system for freely designing and creating detailed, dynamic, and animated facial expressions is developed. The presented pattern functions produce detailed and animated facial expressions. The system produces realistic results with fast performance, and allows users to directly manipulate it and see immediate results. Two unique methods for generating real-time, vivid, and animated tears have been developed and implemented. One method is for generating a teardrop that continually changes its shape as the tear drips down the face. The other is for generating a shedding tear, which is a kind of tear that seamlessly connects with the skin as it flows along the surface of the face, but remains an individual object. The methods both broaden CG and increase the realism of facial expressions. A new method to automatically set the bones on facial/head models to speed up the rigging process of a human face is also developed. To accomplish this, vertices that describe the face/head as well as relationships between each part of the face/head are grouped. The average distance between pairs of vertices is used to place the head bones. To set the bones in the face with multi-density, the mean value of the vertices in a group is measured. The time saved with this method is significant. A novel method to produce realistic expressions and animations by transferring an existing expression to a new facial model is developed. The approach is to transform the source model into the target model, which then has the same topology as the source model. The displacement vectors are calculated. Each vertex in the source model is mapped to the target model. The spatial relationships of each mapped vertex are constrained

    American Geriatrics Society and National Institute on Aging Bench-to-Bedside conference: sensory impairment and cognitive decline in older adults

    Full text link
    This article summarizes the presentations and recommendations of the tenth annual American Geriatrics Society and National Institute on Aging Bench‐to‐Bedside research conference, “Sensory Impairment and Cognitive Decline,” on October 2–3, 2017, in Bethesda, Maryland. The risk of impairment in hearing, vision, and other senses increases with age, and almost 15% of individuals aged 70 and older have dementia. As the number of older adults increases, sensory and cognitive impairments will affect a growing proportion of the population. To limit its scope, this conference focused on sensory impairments affecting vision and hearing. Comorbid vision, hearing, and cognitive impairments in older adults are more common than would be expected by chance alone, suggesting that some common mechanisms might affect these neurological systems. This workshop explored the mechanisms and consequences of comorbid vision, hearing, and cognitive impairment in older adults; effects of sensory loss on the aging brain; and bench‐to‐bedside innovations and research opportunities. Presenters and participants identified many research gaps and questions; the top priorities fell into 3 themes: mechanisms, measurement, and interventions. The workshop delineated specific research questions that provide opportunities to improve outcomes in this growing population.Funding was provided by National Institutes of Health (NIH) Grant U13 AG054139-01. Dr. Whitson's efforts and contributions were supported by R01AG043438, R24AG045050, UH2AG056925, and 5P30AG028716. Dr. Lin's effort and contributions were also supported by R01AG055426, R01HL096812, and R33DC015062. (U13 AG054139-01 - National Institutes of Health (NIH); R01AG043438; R24AG045050; UH2AG056925; 5P30AG028716; R01AG055426; R01HL096812; R33DC015062)Accepted manuscrip

    Rest-Frame Ultraviolet to Near Infrared Observations of an Interacting Lyman Break Galaxy at z = 4.42

    Full text link
    We present the rest-frame ultraviolet through near infrared spectral energy distribution for an interacting Lyman break galaxy at a redshift z=4.42, the highest redshift merging system known with clearly resolved tidal features. The two objects in this system - HDF-G4 and its previously unidentified companion - are both B_{435} band dropouts, have similar V_{606}-i_{775} and i_{775}-z_{850} colors, and are separated by 1", which at z=4.42 corresponds to 7 kpc projected nuclear separation; all indicative of an interacting system. Fits to stellar population models indicate a stellar mass of M_\star = 2.6\times 10^{10} M_\odot, age of \tau_\star = 720 My, and exponential star formation history with an e-folding time \tau_0 = 440 My. Using these derived stellar populations as constraints, we model the HDF-G4 system using hydrodynamical simulations, and find that it will likely evolve into a quasar by z\sim3.5, and a quiescent, compact spheroid by z\sim 2.5 similar to those observed at z > 2. And, the existence of such an object supports galaxy formation models in which major mergers drive the high redshift buildup of spheroids and black holes.Comment: 7 pages, 7 figures, accepted for publication in Ap

    Mid-Infrared Spectroscopy of Two Lensed Star-forming Galaxies

    Full text link
    We present low-resolution, rest-frame ~ 5 - 12 micron Spitzer/IRS spectra of two lensed z ~ 2 UV-bright star-forming galaxies, SDSS J120602.09+514229.5 and SDSS J090122.37+181432.3. Using the magnification boost from lensing, we are able to study the physical properties of these objects in greater detail than is possible for unlensed systems. In both targets, we detect strong PAH emission at 6.2, 7.7, and 11.3 microns, indicating the presence of vigorous star formation. For J1206, we find a steeply rising continuum and significant [S IV] emission, suggesting that a moderately hard radiation field is powering continuum emission from small dust grains. The strength of the [S IV] emission also implies a sub-solar metallicity of ~ 0.5 Z_{Sun}, confirming published rest-frame optical measurements. In J0901, the PAH lines have large rest-frame equivalent widths (> 1 micron) and the continuum rises slowly with wavelength, suggesting that any AGN contribution to L_{IR} is insignificant, in contrast to the implications of optical emission-line diagnostics. Using [O III] line flux as a proxy for AGN strength, we estimate that the AGN in J0901 provides only a small fraction of its mid-infrared continuum flux. By combining the detection of [Ar II] with an upper limit on [Ar III] emission, we infer a metallicity of > 1.3 Z_{Sun}. This work highlights the importance of combining rest-frame optical and mid-IR spectroscopy in order to understand the detailed properties of star-forming galaxies at high redshift.Comment: 20 pages, 3 figures, 2 tables. ApJ accepte

    How is community based ‘out-of-hours’ care provided to patients with advanced illness near the end of life: A systematic review of care provision

    Get PDF
    Background: Deaths in the community are increasing. However, community palliative care out-of-hours is variable. We lack detailed understanding of how care is provided out-of-hours and the associated outcomes. Aim: To review systematically the components, outcomes and economic evaluation of community-based ‘out-of-hours’ care for patients near the end of life and their families. Design: Mixed method systematic narrative review. Narrative synthesis, development and application of a typology to categorise out-of-hours provision. Qualitative data were synthesised thematically and integrated at the level of interpretation and reporting. Data sources: Systematic review searching; MEDLINE, EMBASE, PsycINFO, CINAHL from January 1990 to 1st August 2022. Results: About 64 publications from 54 studies were synthesised (from 9259 retrieved). Two main themes were identified: (1) importance of being known to a service and (2) high-quality coordination of care. A typology of out-of-hours service provision was constructed using three overarching dimensions (service times, focus of team delivering the care and type of care delivered) resulting in 15 categories of care. Only nine papers were randomised control trials or controlled cohorts reporting outcomes. Evidence on effectiveness was apparent for providing 24/7 specialist palliative care with both hands-on clinical care and advisory care. Only nine publications reported economic evaluation. Conclusions: The typological framework allows models of out-of-hours care to be systematically defined and compared. We highlight the models of out-of-hours care which are linked with improvement of patient outcomes. There is a need for effectiveness and cost effectiveness studies which define and categorise out-of-hours care to allow thorough evaluation of services

    Atom chip based generation of entanglement for quantum metrology

    Full text link
    Atom chips provide a versatile `quantum laboratory on a microchip' for experiments with ultracold atomic gases. They have been used in experiments on diverse topics such as low-dimensional quantum gases, cavity quantum electrodynamics, atom-surface interactions, and chip-based atomic clocks and interferometers. A severe limitation of atom chips, however, is that techniques to control atomic interactions and to generate entanglement have not been experimentally available so far. Such techniques enable chip-based studies of entangled many-body systems and are a key prerequisite for atom chip applications in quantum simulations, quantum information processing, and quantum metrology. Here we report experiments where we generate multi-particle entanglement on an atom chip by controlling elastic collisional interactions with a state-dependent potential. We employ this technique to generate spin-squeezed states of a two-component Bose-Einstein condensate and show that they are useful for quantum metrology. The observed 3.7 dB reduction in spin noise combined with the spin coherence imply four-partite entanglement between the condensate atoms and could be used to improve an interferometric measurement by 2.5 dB over the standard quantum limit. Our data show good agreement with a dynamical multi-mode simulation and allow us to reconstruct the Wigner function of the spin-squeezed condensate. The techniques demonstrated here could be directly applied in chip-based atomic clocks which are currently being set up

    Coiling Instability of Multilamellar Membrane Tubes with Anchored Polymers

    Full text link
    We study experimentally a coiling instability of cylindrical multilamellar stacks of phospholipid membranes, induced by polymers with hydrophobic anchors grafted along their hydrophilic backbone. Our system is unique in that coils form in the absence of both twist and adhesion. We interpret our experimental results in terms of a model in which local membrane curvature and polymer concentration are coupled. The model predicts the occurrence of maximally tight coils above a threshold polymer occupancy. A proper comparison between the model and experiment involved imaging of projections from simulated coiled tubes with maximal curvature and complicated torsions.Comment: 11 pages + 7 GIF figures + 10 JPEG figure
    corecore